Математика для ГМУ
- Определитель 4-го порядка
равен
- Определитель
равен нулю при b равном
- Определитель матрицы
равен
- Для матрицы
матрица, составленная из алгебраических дополнений, имеет вид
- Скалярное произведение векторов
и
равно -16, угол между ними
, длина вектора
равна 8. Длина вектора
равна
- Проекция вектора
на ось OY равна
- Даны векторы
и
. Скалярное произведение векторов (
), где
, равно
- Даны два вектора
и
. Векторы
и
ортогональны, если число
равно
- Даны два вектора
и
. Скалярный квадрат вектора
равен
- Координаты вершин треугольника АВС равны А (1,2,-2), В (2,0,-1), С (2,3,-1). Проекция
стороны
на сторону
равна
- Даны векторы
. Вектору
, где точки А (1,1,1) и В (2,-3,2), ортогональны векторы
- Уравнение прямой, проходящей через точки
и
, имеет вид
- Уравнение Ах+Ву+С = 0 определяет прямую, параллельную оси ОУ, если 1) А = 0; 2) В = 0; 3) В = С = 0; 4) А = С = 0; 5) С = 0. Из перечисленных утверждений верными являются
- Уравнение прямой, проходящей через точку (-1,1) параллельно прямой 2х-у+5 = 0, имеет вид
- Каноническое уравнение прямой, проходящей через точку
с направляющим вектором
имеет вид
- Прямая х+2у-6 = 0 отсекает на оси ОУ отрезок, равный
- Дано уравнение кривой второго порядка
. Ее каноническое уравнение и тип кривой
- Координаты фокуса параболы
равны
- Координаты вершин гиперболы
равны
- Координаты вершин эллипса
равны
- Даны полярные координаты точки
. Ее декартовы координаты равны
- Координаты орта
вектора
равны
- Объем параллелепипеда, построенного на векторах
,
и
, равен
- Отношение
при
равно
- Даны два вектора
и
. Вектор
длиннее вектора
в k раз, где k равно
- Вершины треугольника АВС имеют координаты А (1,1,1), В (2,2,0), С (2,3,3). Проекция
стороны
на
равна
- Координаты точки пересечения прямых 3х-4у+4 = 0 и х+4у-4 = 0 равны
- Прямая 3х-3у+5 = 0 образует с положительным направлением оси ОХ угол, равный
- Расстояние от точки М(1, 1) до прямой 3х+4у+3 = 0 равно
- Прямая 2х+2у-3 = 0 образует с положительным направлением оси ОХ угол, равный
- Из перечисленных прямых:
- 2у = х-2;
- у = 2х+1;
- у+2х-1=0;
- 2х+2у-3=0;
- 4х-2у+3 = 0
перпендикулярными к прямой 2у+х-2 = 0 являются прямые
- Координаты фокусов гиперболы
равны
- Парабола, симметричная относительно оси ОХ, с вершиной в начале координат проходит через точку М (-4, 2). Уравнение такой параболы имеет вид
- Уравнение
на плоскости ХОУ определяет
- Даны уравнения кривых:
;




.
Число уравнений, задающих гиперболу, в этом списке равно
- В полярной системе координат задана точка
. Ее декартовы координаты равны
- Для матрицы
матрица, составленная из алгебраических дополнений, имеет вид
- Координаты вершин треугольника АВС равны А (1,-1,0), В (0,1,1), С (1,2,0). Проекция
стороны
на сторону
равна
- Векторы
и
ортогональны, если число
равно
- Координаты векторного произведения
векторов
и
равны
- Если в параллелограмме, построенном на векторах
и
,
, то
- Площадь параллелограмма, построенного на векторах
и
, равна
- Расстояние d от точки
до прямой 4х+3у-10 = 0 равно
- Уравнение
на плоскости определяет
- Определитель матрицы
равен
- Отношение модулей векторных произведений
при
равно
- Даны два вектора
и
. Скалярный квадрат вектора
равен
- Даны два вектора
и
. Острый угол
между этими векторами равен
- Векторы
и
коллинеарны при
равно
- Даны два вектора
и
. Вектор
длиннее вектора
в k раз, где k равно
- Прямые
и
перпендикулярны, если число
равно
- Уравнение прямой, проходящей через точки М(1, 2) и N(0, 3), имеет вид
- Даны уравнения кривых:






.
Число уравнений, задающих гиперболу, в этом списке равно
- Дано уравнение эллипса
. Расстояния между вершинами эллипса равны
- Матрица А равна
. Ее определитель det A равен
- Длина вектора
, если А (0,3,-2), В (4,-1,0) равна
- Даны векторы
. Вектору
, где точки А (2,4,8) и В (8,-8,2), коллинеарны
- Отношение
при
равно
- Даны векторы
. Вектору
, где точки А (2,4,8) и В (5,-2,5), коллинеарны
- Среди векторов
наименьшую длину имеет вектор
- Проекция вектора
на ось OZ равна
- Уравнение оси ОУ имеет вид
- Расстояние между параллельными прямыми 4х+3у-1 = 0 и 4х+3у+4 = 0 равно
- Из перечисленных прямых:
- у = х;
- 2у-х-1 = 0;
- у = 2(х+1);
- у = 1/2(x+1)
через точки
и
, проходят прямые
- Уравнение директрисы параболы
имеет вид
- Уравнение биссектрисы I координатного угла в полярной системе имеет вид
- Определитель
равен
- Определитель
равен -1 при b равном
- Для определителя 3-го порядка
и
– cоответственно алгебраическое дополнение и минор к элементу
, тогда разложение определителя по 2-й строке имеет вид
- Матрицы А и В равны соответственно
,
. Если det A =
, то det В равен
- Даны векторы
и
. Координаты их векторного произведения
равны
- Отношение
при
равно
- Уравнение прямой, проходящей через точку (1, 1) и перпендикулярной оси ОУ, имеет вид
- Прямые
и
параллельны, если число
равно
- Фокусы эллипса имеют координаты
и
. Большая полуось равна 5. Уравнение эллипса имеет вид
- Длины векторов
и
, соответственно, равны 1 и 4, их скалярное произведение равно 2. Угол между векторами
,
равен
- Из перечисленных прямых:
- 2х-3у+1 = 0;
- 6у-4х+2 = 0;
- 3у = 4х-2;
- 2х+3у-1=0;
- 2х = 4+3у
параллельными являются
- На плоскости ХОУ каноническое уравнение оси ОУ имеет вид
- Даны уравнения кривых второго порядка:







Уравнениями парабол в этом списке являются уравнения
- Уравнения асимптот гиперболы
имеют вид
- Матрица А равна
. Ее определитель det A равен
- Определитель
равен нулю при b равном
- Числа
являются направляющими косинусами вектора
. Сумма их квадратов
равна
- Объем треугольной пирамиды с вершинами в точках А(0,0,0), В(2,1,1), С(0,1,1) и D(1,0,1) равен
- Прямые
и
перпендикулярны, если число
равно
- Прямые
и
параллельны, если число
равно
- Уравнение прямой, проходящей через точки
и
, имеет вид
- Уравнение окружности с центром в начале координат и с радиусом 3 в полярной системе имеет вид
- Матрица А равна
. Ее определитель det A равен
- Определитель
равен нулю при b, равном
- Определитель матрицы
равен
- Даны два вектора
и
. Острый угол
между этими векторами равен
- Проекция вектора
на ось OY равна
- Векторы
в порядке возрастания их модулей расположены так:
- Острый угол между прямыми 5х-у+7 = 0 и 2х-3у+1 = 0 равен
- Прямая 2х+2у-3 = 0 образует с положительным направлением оси ОХ угол, равный
- Дано уравнение кривой второго порядка
. Ее каноническое уравнение и тип кривой
- Уравнение линии
в декартовой системе имеет вид
- Предел отношения приращения функции
к приращению аргумента
при стремлении
к нулю называется
- Точка с абсциссой х = -1 для функции
является точкой
- Для функции
, обратной является функция
- Производная функции
равна
- Для функции
период равен
- Функция f (x) называется нечетной, если для всех x из области определения
- Из перечисленных функций





нечетными являются
- Функция
является возрастающей на интервале, если на этом интервале
- Для функции
точка М(-2, 0) является точкой
- Формула первого замечательного предела
- Функция
является убывающей на интервале, если на этом интервале
- Первообразная для функции
имеет вид
- Из перечисленных функций
- ограниченными функциями являются
- Необходимым условием существования экстремума функции f(x) в точке является, условие
- Из перечисленных функций
- возрастают на промежутке (1; 3)
- Первообразная для функции
имеет вид
- Из перечисленных функций
- четными функциями являются
- Из перечисленных функций





ограниченными функциями являются
равен
- Функция F(x) называется первообразной для функции f(x), если для всех х выполняется равенство
- Функция f (x) называется четной, если для всех x из области определения
- Для функции
, обратной является функция
- Из перечисленных функций



нечетными являются
- Первообразная для функции
имеет вид

- Предел отношения приращения функции
к приращению аргумента
при стремлении
к нулю называется
- График четной функции симметричен относительно
- Число грузовых машин, проезжающих мимо бензоколонки, относится к числу легковых машин, как 3:2. Известно, что в среднем одна из 30 грузовых и одна из 25 легковых машин останавливается для заправки. Найти вероятность того, что проезжающая машина будет заправляться.
- Завод в среднем дает 28% продукции высшего сорта и 70% – первого сорта. Найдите вероятность того, что наудачу взятое изделие будет или высшего, или первого сорта.
- Чему равна вероятность достоверного события?
- Если вероятность события A есть р(A), то чему равна вероятность события, ему противоположного?
- Задана таблица распределения случайной величины. Найти C.

- Выпущено 100 лотерейных билетов, причем установлены призы, из которых 8 по 1 руб., 2 – по 5 руб. и 1 – 10 руб. Найдите вероятности
(билет не выиграл),
(билет выиграл 1 руб.),
(билет выиграл 5 руб.) и
(билет выиграл 10 руб.) событий.
- Задана таблица распределения случайной величины. Найти р(X < 3).

- Бросаются 2 монеты. Вероятность того, что выпадут и герб, и решка, равна
- X и Y – независимы. DX = 5, DY = 2. Используя свойства дисперсии, найдите D(2X+3Y).
- Вероятность любого события всегда удовлетворяет следующему условию
- MX = 1,5. Используя свойства математического ожидания, найдите M(2X+5).
- Для контроля качества продукции завода из каждой партии готовых изделий выбирают для проверки 1000 деталей. Проверку не выдерживают в среднем 80 изделий. Равной чему можно принять вероятность того, что наугад взятое изделие этого завода окажется качественным? Сколько примерно бракованных изделий (назовем это число M) будет в партии из 10000 единиц?
- DX = 1,5. Используя свойства дисперсии, найдите D(2X+5).
- Для вероятности р по выборке объема n с помощью величины
и таблиц нормального распределения строится доверительный интервал. Если увеличить объем выборки в 100 раз, длина доверительного интервала примерно
- Стрелок попадает в цель в среднем в 8 случаях из 10. Какова вероятность, что, сделав три выстрела, он два раза попадет?